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Abstract

In this paper we present:- model that characterizes th relation between wire length

distributions and placement of logic on master slice K~s. In particular, the model

provides a firm mathematical basis for the well known empirical law known as Rent's

Rule. It is shown that Rent's Rule is a manifestation of a more fundamental underlying

process characterized by a function from which the distribution of wire lengths can be

recovered. That is, Rent's Rule contains all the information about the distribution of

" .. wire lengths. Based on this, estimates for the average wire length are derived. Finally,

experimental results from both simulated and actual chips are presented.
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1 Introduction

P Master Slice (MS) or Gate Array is a very popular method of designing LSI/VLSI

* circuits, especially when fast turn-around time is the primary objective. This fast turn-

around time is achieved by having a two-dimensional array of uniformly spaced logic

cells of identical size that have been pre-fabricated up to the metalization layer.

Placement of the logic consists of assigning the circuits to one or more of the basic cells

on the array. The space between the logic cells, called channels, are used to route the

wires connecting the cells. The routing of wires is usually carried out in two steps. The

first step, called Global Wiring, simply assigns wires to channels without allocating the

individual tracks to the wires. The second step, called Exact Embedding, assigns wires

to specific tracks within a channel.

The quality of the placement and routing is measured by various parameters, the most

common one being average wire length. With regard to wire length, placement and

routing are mutually competing tasks and the solution space for both is exponential in

U nature. It seems natural then to ask how to estimate measures of placement such as

* . average wire length, total number of wiring tracks etc, prior to routing the connections.

- These estimates will give some indication about the routability of the placement and, if

too large, can be used to select another placement and the process repeated.

.0 The nature of placement and routing problems necessitate a probabilistic approach to

4 .o~ the wirability analysis of integrated circuits. Stochastic models for wiring space

estimation and the relation between wire length distribution and placement optimization

have received extensive attention recently [1], [6], [21, [5], [7], [3] and [4]. Much of the

reported work on wire length distributions and placement of logic rests on empirical

evidence that indicates that Owell placedm chips exhibit a power law relation, known as

* Rent's Rule, between the number of components and the number of corresponding

* . external connections. Rent's Rule has been the basis of much of the heuristic arguments

used to derive upper bounds on the average wire length and the form of the wire length

LA distribution. Rent's Rule has the form

9~ TKCP 1



where T is the average number of external connections, C is the average number of

components, K is number of connections per component and p is a positive constant. In

[11, [21 and [41 the effect of placement on wire length distribution was introduced by

assuming that a hierarchical partitioning scheme aimed at minimizing the average wire

length results in a configuration that exhibits Rent's Rule. In 121 an upper bound Fkfor

* the average wire length between elements of different subsets of components of size k

was derived, and using Rent's Rule to obtain the number of connections between such

subsets, an upper bound on the average wire length was derived. In [3] the Pareto

distribut ion is proposed for the distribution of wire lengths. Similar results were

presented in [4].

2 Outline of the paper

In this paper we present a model that provides a firm mathematical basis for Rent's

Rule and its relation to the wire length distribution. It will be shown that Rent's Rule,

an observed fact, is a manifestation of a more fundamental underlying process

characterized by a function which leads directly to a general class of wire length

distributions known as the Weibull family. That is, Rent's Rule contains all the

information about the distribution of wire lengths. Based on this, estimates for the

average wire length are derived. Finally the theory presented here is substantiated by

simulation results and data gathered from earlier works.

3 The Model

A master slice integrated circuit is an array of equal size components (gates) arranged

in rows and columns on a planar surface. This situation is idealized by considering such

a chip to be a continuum of gates, each being a point source whose distance measured

from an arbitrary origin is denoted by x. This continuous model does not cause any

serious inaccuracies in the analysis that follows, for one may view this 'ideal chip' as a

Thu lieardisancs sch s wrelengths are viewed as a continuum of mprospective' or

Let [a~x] denote a ocirculare region on the chip of radius x centered at a, encompassing
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C gates. Consider the sample space consisting of all possible placements of a given logic

graph on a master slice array. Let X be the random variable defined on this sample

M.s space that denotes the length of a wire from its source to its point of termination. By

- :terminal at xO we mean that a wire either actually terminated at x or it has crossed the

boundary of the region of radius x. Thus X may be viewed as being the length of a wire

up to the formation of a terminal or the length of the Ointer-terminalo formation

interval. Let A, B and C denote the following events:
-C, ..*

A x < X < x+dx

B - {X>x}2)

C --- AIBJ

A represents the unconditional event that a wire terminates between the regions of

radius x and x+dx. B represents the event that a wire did not terminate with the region

of radius x. C is the conditional event that a wire terminates within a region of radius

-' .-. x+dx given that it did not terminate with in the region of radius x. Let F(x) and f(x)

represent the distribution and density functions of X respectively. Then

P(A) - P(x < X < x+dx) - F(x+dx) - F(x) = f(x)dx

P(B) - P(X > x) 1- F(x) (3).=

P(C) - P(AI B) =P(x < X < x+dx IX > x) = Z(x)dx

Now Z(x)dx represents the conditional probability that a wire having crossed the

boundary of a region of radius x terminates before reaching the boundary of a region of

radius x+dx. Z(x) is not a probability, rather it is the instantaneous rate of wires

terminating or terminal formation at x. Note that rate of certain events here refers to

the number of such events per unit length of wire. Since A CB, we have

Xfi fi "-> -. -
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Zx)dx PIA B) P(A) _ f(x)dx -d(ln(1 - F(x))) (4)

P(B) 1 - F(x) dx

": Integrating (4) we obtain the distribution of wire lengths as

x

F(x)- 1- EXP -f Z(t)dt (5)
0

We will now interpret Rent's Rule as a parametric model for Z(x).

It is clear that the number of gates in [a,x] is the content or measure of the interval,

which is x-a. In other words, the number of gates in the region of radius x centered at a

is proportional to x-a. Rent's Rule states that the average number of terminals formed

by a collection of (x-a) gates is given by:V.,

T = cp(x-a)P (6)

Recall that Z(x) represents the number of terminals per unit length of wire formed at

x. Since the relation between T and x is that of formation of terminal at x, the total

number of terminals at x is simply T - (x-a)Z(x). Rent's Rule states that Z(x) has the

form

Z(x)= ap(x -a)P (7)

Combining equations (5) and (7) the wire length distribution function has the form

F(x) = 1 - e0(X" aP (8)

Equation (8) is the well known Weibull distribution function with scale parameter a,

location parameter a and shape parameter P. With a chosen to be zero the wire length

distribution and density functions are given by

Z.
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F(x) .e1 X()

f(x) - 'pxP le'cixP (10)

V 4 Choices for Z(x)

Depending on the physical situation one may choose the form of Z(x) from which the

distribution function F(x) can be recovered. Z(x) can behave in one of three different

ways, all parameterized by equation (7). If p = 1 then Z(x) = a, representing a

constant rate of terminal formation . If 0 < p < I then Z(x) is a decreasing function of

x while if p > 1 then Z(x) is an increasing function of x.

4.1 Constant Z(x) : p 1

In this case the distribution function is given by F(x) -1 e" x, which is the

I. exponential distribution. This represents a situation where the probability that a wire

has length x+l given that it has length 1 is independent of 1. Equivalently, the number of

4' -terminals formed at x per length of wire is constant. Except for small regions of the

array this assumption may not be realistic. This is exactly the same observation made in

J"" 13] where the exponential distribution was ruled out on the basis of empirical results

showing that the ratio of the number of wires of length k+1 to the number of wires of

length k increases with k.

- 4.2 Decreasing Z(x) : 0 < p <1
As stated earlier, this corresponds to what has been empirically observed as Rent's

Rule. In this case the wire length distribution function is the Weibull distribution with

shape parameter p. A decreasing Z(x) represents a situation where the rate of terminal

formation decreases with the length of the a wire. It is this situation that is most often

found in practice.

.- *..
[A'%

tq::
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4.3 Increasing Z(x) :P > 1

In this case the rate at which terminals are formed at x increases with the length of the

wire. Although theoretically possible, such a situation would not occur in practice as

placement is usually optimized by minimizing the average wire length.

In summary, it has been shown that Rent's Rule is the exactly the function T = x*Z(x)

when the corresponding Z(x) has the form 0 ~pPP, with 0 < P < 1. Knowledge of Z(x)

completely determines the wire length distribution F(x). Thus Rent's Rule states that

Owell placedu chips will result in a wire length distribution from the Weibull family.

5 Average Wire Length

* Assuming that a, hierarchical placement procedure was carried out and Rent's Rule

holds true, the expected value of wire length can easily be computed since the form of

Z(x) is then known to be oapxP-1 and the corresponding wire length distribution is a two

parameter Weibull. Thus the expected value of wire length is given by

E(X) = I[1 - F(x)]dx f e
0

To compute E(x) from observed frequencies of wire lengths the parameters a and p
have to be estimated. In the following section methods for obtaining such estimates are

presented.

5.1 Estimating t and p

There are two methods of estimating the parameters of a Weibull when the data is

* given in the form of quantized frequencies. The first is a graphical method and the

second is known as the method of moments.

*ie lhuhtertclypsilsc astainwudntocri rciea

9 lceet suual otmie y iimzn the average P: wie ent.. .P --
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6.2 Graphical Method or Estimating ot and p

This is the simplest and quickest method of obtaining estimates of Weibull parameters.

The data is in the form (k, nk), k -- 1, 2,..., m, where nk is the number of wires of

length k. From this we form the pairs (k, Fk) where Fk is the cumulative frequency

function defined by

Ne k

{ni}

F- n

where n is the total number of wires.

Since F(x) =1- ,we have

" -%In I -- In(m) + I$1n(x) (12)

Letting v -n, In n(:) and u 7: In In[F ' equation (12) becomes

" pv + c. This is straight line with slope P and intercept In(a). Thus from the

observed data (k, nk) we form the data (vk, uk), where uk = In In F and

A
Vk In(k) and fit a straight line. Using the method of least squares the estimates a and
Ak

p of a and p respectively are given by

AA
.=eL e (13)

)(14)

S.-..

JM
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m

where u - and v =
Im m

5.3 Method of Moments

The method of moments provides a another way of estimating a and p. Let ur be the
r moment of zero of f(x; a, P). Let Xl, X 2 1 . .., Xm be a sample of size m from

f(x; a, P). Then from the data we form the sample moments

m m

m I m m2 m

A AThe moment estimators a and p are obtained by solving the following two equations

simultaneously.

(1) (1 ) ""1
u' - m (I (15)

2

u = m2  = (1)rT( + ) (16)

Solving equation (15) we obtain

A T (1I+ )P
=m (17)

Subsituting equation (17) into (16) we obtain
°.% .1

- 'o ° _. * .. .. . . . .
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2P T P m,
T2( ) ml (18)

A
Numerical solution to equation (18) yields the estimator p.

- Simulation Results

To verify the quality of the estimators, simulations were carried out with sample sizes

, from the Weibull were generated. The resulting data was quantized and estimates for a.

* and p were computed using both methods. Table 1 contains the results of these

simulations. The method of moments provides relatively better estimates of a and p
5..

than the graphical approach. Recall that the moment estimate for p involves finding the

zero of equation (18). The simplicity and ease of the graphical approach enables one to

obtain an initial estimate for P which is used in the iterative solution of equation (18).

" Table 1: Simulation Results for the Weibull Model

,-. ~. n m Graphical Method of Moments
A A A A

-sample # of a. P a P at P
size intervals

- - - - - - - - - - - - - - - - - - - - - - - - -

1000 38 0.5 0.8 0.557 0.715 0.484 0.787

2000 21 0.6 0.9 0.627 0.846 0.564 0.91

5000 37 0.4 1.0 0.485 0.866 0.392 0.989
S'i

7 500 35 0.6 0.9 0.666 0.821 0.568 0.915
---.. . - -, , -- - - - - - -
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7 Experimental Results

The Weibull model for wire lengths was tested on data gathered from [3]. The data

V was gathered from three logic graphs that were placed using a hierarchical placement

algorithm. Graph A consists of 2146 gates with a Rent exponent p = 0.75. Graph B, a

subgraph of A, has 576 gates with an assumed Rent exponent p =0.75. Graph C has

528 gates with a Rent exponent p = 0.59.

The histograms of wire lengths for graphs A, Band Ctaken from [3] were fitted to the

equation

InIn~jT = n(a) + 131n(i)

Figures 1, 2 and 3 show plots of In In versus ln(i) for the three logic graphs.

VIn all three cases the fit appears to be excellent. The estimates for CL and P obtained

using both the graphical and the method of moments were used to compute the expected

value of wire length, R, using equation (11). These values along with those reported in

[3] are shown in table 2.

Table 2: Experimental Results on Wire Length Estimation

Graph # of # of Rent Exptl Theor. Theor. Theor.
gates conns expo R R R R

p from [3] graphical moments

A 2146 7302 0.75 3.53 7.54 2.99 3.02
B 576 1383 0.75 2.98 5.24 2.48 2.56
C 528 1046 0.59 2.20 4.02 1.56 1.65

[-----.-
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8 Conclusions

In conclusion we have developed a mathematical formulation of Rent's Rule

..-. characterized by a function Z(x) from which the wire length distribution can be

recovered. We have found that Rent's Rule is tantamount to assuming a class of wire

length distributions known as the Weibull family, with the Rent exponent p

corresponding to the shape parameter P of a Weibull distribution. The average wire

length is given as a function of the Rent parameters and methods for estimating these

parameters are given. Experimental results strongly indicate that the Weibull model is

V very accurate.
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Figure 1: Wire Lengths of Graph A fitted to a Weibull
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